Digital Technology – the Next Generation of Water Mixing

When a nurse's aide prepares to bathe an elderly hospital patient or a hotel guest steps into a shower, neither stops to think about water-mixing technology or whether their water will be the right temperature.

2

For engineers who design plumbing systems and the facility managers responsible for them, the situation is very different.

Engineers must understand how water temperature is regulated throughout a building and specify the most appropriate water-mixing solution for any given job. That requires familiarity with all the options for protecting building occupants from the risks of water stored and delivered at unsafe temperatures.

Facility managers also need to know how plumbing systems work. They can reap significant benefits from a solution that provides tight control over hot water delivery and access to the system data needed to manage it. In addition, they need to understand how water-mixing solutions vary, in terms of ease of installation, use, and maintenance.

This paper compares the two water-mixing options available to plumbing engineers and facility managers: the more traditional mechanical technology and the more advanced digital water mixing technology. The focus is on requirements for healthcare, hospitality, educational, correctional, office, and other commercial and institutional facilities.

Why Is Controlling Water Temperature Critical?

Much is at stake in controlling water temperature in a commercial or institutional facility.

- Today more people than are staying in hospitals, hotels, and other facilities. Regardless of the challenges, they expect to have access to safe hot water whenever they need it.
- Uncontrolled and unmonitored water distribution systems can create hightemperature scalding hazards in bathtubs, sinks, and showers. The severity of scalding injuries depends on the temperature of the hot water and duration of the exposure.¹

¹ "Understanding Potential Water Heater Scald Hazards," *American Society of Sanitary Engineering (ASSE) Scald Awareness Task Group*, <u>http://www.asse-plumbing.org/WaterHeaterScaldHazards.pdf</u>, March 2012.

 Serious risks, such as Legionella growth, scalding, and thermal shock, are associated with mismanaged water temperature. Legionella bacteria are destroyed almost instantly at water temperatures above 160°F, but at temperatures between 70°F and 115°F, their growth is abundant.² For more, go to Why worry about Legionella, below.

- Plumbing engineers and facility managers are responsible for designing and managing systems that provide water in a safe, consistent way. To meet those requirements, plumbing systems must store and consistently deliver water at temperatures that mitigate risk to building occupants.
- Many Green Building rating systems deal specifically with water conservation. The new USGBC LEED[®] v4 Integrative Process addresses sustainable design, construction, and on-going operations at the onset of a project. To attain credits for that LEED process, an engineer must create a preliminary water and energy budget. One of the basic requirements of adhering to such a budget would be a way to precisely control water temperature.

The Traditional Approach

Today, the most widely employed approach to managing hot water delivery uses mechanical technologies. Mechanical thermostatic mixing valves (TMVs) mix hot and cold water to provide mixed water at a stabilized temperature, compensating for temperature and pressure variations.

Throughout the 20th century, water mixing technology, used to regulate water temperatures in a plumbing system, evolved at a relatively slow pace.

² "Preventing Legionnaires' Disease in Building Services," *CIBSE (Chartered Institution of Building Services Engineers) Journal, http://www.cibsejournal.com/cpd/modules/2012-07/*, July 2012.

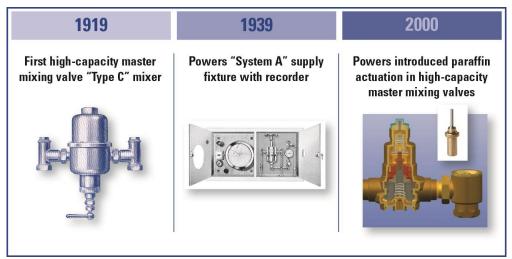
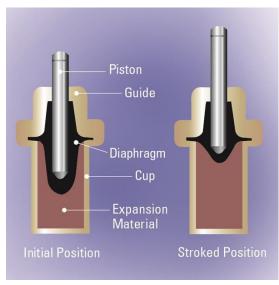



Figure 1–The Evolution of Mechanical Mixing

The first high-capacity master mixing valve was developed around 1919. Twenty years later, capability for recording temperature over time was added. At the end of the last century, Powers became the first company to use paraffin actuation in high-capacity master mixing valves and systems. Since then, paraffin actuation has been accepted as the most effective way to regulate water temperature.

The temperature within a mixing valve is affected by fluctuations in the inlet water temperature and pressure. Heat is transferred through the walls of the sensor and passed to the media. In the example in Figure 2, that media is paraffin and copper. Ether can also be utilized, and some valve manufacturers use a bimetal coil.³

Figure 2–How TMVs Work

³ Scott Tibbitts, "High Output Paraffin Actuators: Utilization in Aerospace Mechanisms," NASA Technical Reports Server, May 1, 1988.

The different media–paraffin, ether, and bimetal–essentially work the same way but with differing degrees of effectiveness. The heat transfer expands the media and changes the ratio of hot to cold water. As the temperature gets warmer, the stainless steel piston moves up, closing off the hot water and opening the cold to maintain the setpoint temperature.

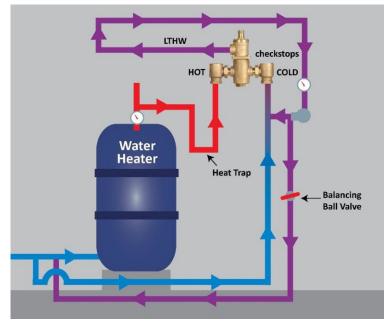


Figure 3–Thermostatic Mixing Valve in a Plumbing System

TMV Requirements

For TMVs to work correctly, the system must be properly designed and balanced. TMVs work most effectively under ideal conditions, for example, with equal inlet supply pressures or when there is no more than a 20% pressure differential across the inlets.

Several characteristics of TMVs determine how well they can meet the demands of different applications: For example, TMVs:

- are subject to temperature creep in low- or no-demand periods, typically overnight
- require checks and regular maintenance to avoid performance problems
- tend to be more susceptible to problems caused by water chemistry because the actuator operates in the water
- may experience performance issues related to flow rates and valve sizing (Because larger valves handling lower flow rates can have difficulty controlling temperature TMVs need to be sized properly.)
- cannot communicate through a building automation system or the internet

A Newer, Smarter Approach

Digital water mixing represents a significant leap in the technology used to control hot water delivery. This approach incorporates a programmable valve or system to process temperature, flow, and pressure data, which is obtained from sensors on the hot and cold water inlets, mixed outlet, and the mixed-water return. High-speed electronic actuation modulates a simple ball valve that allows the setpoint to be maintained with improved accuracy.

Digital technology is very fast and responsive. It enables collection of a large amount of data, which can be communicated through a building automation system (BAS) or locally, at the controller, providing intelligence at the foundation of the entire plumbing system.

Energy Conservation with Digital Technology

A look at how mechanical and digital water-mixing technologies handle the plumbing system sanitization process illustrates how smart technology helps manage energy use.

In mechanical mixing, a critical factor is approach temperature. It can vary by valve design and technology, anywhere from 5°F to more than 25°F. Approach temperature determines the highest mixed-outlet temperature achievable based on hot water inlet temperature. For example, with a hot water inlet temperature of 120°F at a 20°F approach, the maximum temperature of mixed water that could come out of the valve would be 100°F.

120°F – 20°F = 100°F

With a 5°F approach, only $105^{\circ}F$ (vs. $120^{\circ}F$) incoming hot water would be required to attain a $100^{\circ}F$ outlet temperature.

$105^{\circ}F - 5^{\circ}F = 100^{\circ}F$

Because of the positive close-off of the cold water port with digital mixing technology, the full inlet hot water temperature can be obtained on the mixed-outlet side. To achieve a mixed-outlet temperature of 140°F, incoming hot water would only have to be 140°F.

Plumbing system sanitization is a process that is particularly important in healthcare facilities such as hospitals and assisted living facilities, where it is used as part of a broader infection control effort. For a high-temperature sanitization setpoint of 160°F (the temperature at which Legionella bacteria are destroyed), a hot water supply of 160°F would be needed.

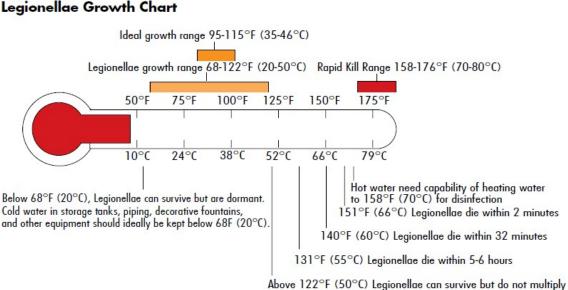


Figure 4–How Legionella Bacteria are Affected by Temperature

Using a mechanical valve, depending on the design and the technology, the hot water supply would need to be as hot as185°F to ensure that water temperatures would be maintained at 160°F throughout the system. The digital mixing approach, with its much lower temperature requirements, is significantly more energy efficient. In addition, when the process is complete, the TMV outlet temperature has to be re-set and the system re-balanced. With digital technology, the re-setting and re-balancing occur automatically.

Why Worry About Legionella?

Of the many waterborne pathogens that can cause illness, the Legionella bacterium is the leading waterborne cause of disease outbreaks in the United States. Legionella grows in freshwater environments, and when people aspirate (or breathe in) airborne moisture carrying it, they become at risk of acquiring Legionnaires' disease, a severe type of pneumonia.

Legionnaires' disease is especially serious for certain segments of the population, including:

- People 50 years of age or older
- Smokers
- Individuals with underlying medical conditions, chronic lung disease or immunosuppression

Incidences of Legionnaires' disease have been steadily increasing. In 2017, health departments reported 7500 to CDC, Because the disease is likely underdiagnosed, that number is probably low. Between 2000 and 2017, CDC reported a 550% increase in infections. About 1 in 10 of the people affected die.

Legionella can be spread through various points of use in a commercial (or residential) facility's premise plumbing system, including:

- Faucets
- Showerheads
- Water Fountains
- Spas and Hot tubs
- Ice Machines

Legionella cannot be completely eradicated, but a well-designed water management plan (WMP) can severely limit the threat it poses to people. Several types of solutions that mitigate the risk of Legionella are available, including:

- Elevated Water Temperature
- Disinfectants chlorine, chloride, chloramines and others
- Point-of-use (POU) filters
- Copper silver ionization
- Ultraviolet treatment
- POE (point-of-entry) ultrafiltration

By affording facility managers enhanced control over domestic hot water, digital mixing systems manage water temperature to inhibit Legionella growth in commercial and institutional facilities, including hospitals and other health care facilities, hotels, prisons, office buildings, and college and university buildings. For an in-depth look at best practices and solutions for mitigating the risk of Legionella, go to http://www.legionella-strategies.com/.

	Mechanical Mixing	Digital Mixing
Hot Water Supply Temperature	The hot water supply must exceed the sanitization temperature setpoint by 5°F to 25°F	The hot water supply equals the sanitization temperature setpoint
Energy Efficiency	With a 160°F sanitization setpoint, a hot water supply of <i>185°F</i> may be needed	With a 160°F sanitization setpoint, a hot water supply of <i>160°F</i> is needed
System Rebalancing	YES: Risk of having to re-set and re-balance the entire system after the sanitization procedure	NO: After the sanitization procedure, the system is re-set and re-balanced automatically

Figure 5 – TMVs' requirements to support the sanitization process at the point of supply

Digital Approach Exceeds Code Requirements

The ASSE 1017-2009 standard governs performance for large hot water distribution valves. For larger valves with flow rates of more than 40 gallons per minute, the standard requires that they hold to $+/-7^{\circ}F$ from the setpoint. Thus, if the setpoint is 140°F, the valve must remain within 133°F to 147°F, a 14°F range. Digital mixing technology can deliver much more precise control and hold the setpoint to within $+/-2^{\circ}F$. That is well within the range the ASSE 1017 standard requires. A digital water-mixing system's sensors sample and report temperature ten times per second.

Managers of healthcare and education facilities must protect all occupants of their facilities, particularly people at high risk for water-temperature-related injuries. The elderly and the very young, for example, as well as individuals with limited or undeveloped physical skills and diminished emotional or mental capacity are at a higher risk of scalding. In addition, facility managers need maintain water temperatures that will limit the growth of Legionella and thus mitigate the risk of Legionnaire's disease. Digital water-mixing technology helps them meet those requirements by more precisely and efficiently managing water temperatures in their plumbing systems. As a result, the technology promotes a safer environment, not only for the most vulnerable populations but for all building occupants, including patients, students, employees, and visitors.

Summary

Thermostatic mixing works effectively in many applications. As more demands are placed on water tempering, however, a more sophisticated approach is needed. Digital mixing provides several advantages:

- +/-2°F temperature control, even during low demand periods, provides significantly more control than mechanical valves afford. This level of precision enables the efficient management of plumbing systems and promotes building safety.
- Eliminates overnight temperature creep during periods of low and no demand.
- A digital mixing system can be integrated with a building automation system (BAS) to allow facility managers to remotely monitor and control water temperatures in a commercial or institutional building. The result is integrated building management.

Digital Water Mixing Benefits

- Enhanced, more precise control of a hot water delivery system (avoiding temperature creep)
- Greater access to system data
- Advanced communications and integration with a building automation system (BAS)
- Increased ability to mitigate Legionella growth and the risk of scalding and thermal shock
- Safer water for occupants of commercial and institution facilities
- Digital systems provide the potential for conserving energy and reducing energy costs. One system, for example, measures mixed-outlet, return flow, and temperature, and can calculate the energy consumed to heat water. It displays energy consumption data in therms, BTUs, gigajoules, and kilowatts.
- Sophisticated communications capability allows for close system monitoring and control, providing facility managers the ability to track and react to changes as a way to ensure the safety of building occupants.
- Sanitization Mode enables high- temperature purges, providing a way to mitigate the risks associated with Legionella and other water-borne bacteria.⁴ ANSI/ASHRAE standard 188- 2015, *Legionellosis: Risk Management for Building Water Systems,* provides best practices on limiting and responding to the occurrence of Legionella.

In Short...

Digital water mixing provides significant advantages for plumbing engineers who design plumbing systems, as well as for the facility owner and manager who use them to control and monitor hot water. They should consider the five major benefits of a digital mixing system when planning for a new project or scoping out a renovation in a commercial or institutional facility.

⁴ Karlyn D. Beer, PhD et al., "Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water – United States, 2011-2012," Centers for Disease Control and Prevention's *Morbidity and Mortality Report (MMWR)*, August 14, 2015

Water Tempering at Its Finest

Since 1891, Powers, a Watts brand, has provided distribution, point-of-use, and emergency water-mixing and temperature solutions used in residential, commercial, and institutional applications. Its T/P technology provides superior protection against temperature and pressure changes. In 1924, Powers developed the first modern pressure balance valve, enhancing bather safety and comfort as modern plumbing evolved.

The company's digital mixing solution is the Powers IntelliStation[™], a smart mixing and recirculation system for domestic hot water. It provides the precise control and insight into a plumbing system needed by commercial and institutional facilities such as healthcare facilities, hotels, educational institutions, and correctional facilities.

Integrated into a building automation system (BAS), the IntelliStation allows facility managers to remotely monitor and control water temperatures to provide safe, efficient hot water delivery. In addition, the IntelliStation provides features that ease installation, repair, and system maintenance.

Learn more at Watts.com/our-story/brands/intellistation-family.

WP-P-DigitalTechnology

©2019